XIV CONGRESS OF THE INTERNATIONAL SOCIETY OF PHOTOGRAMMETRY

 Hamburg, 1980ヘヘ^^^^

Commission III - Presented Paper

Giuseppe Birardi
Facoltà di Ingegneria - Università di Roma
COMPUTING AND CHECKING THE PROJECTION CENTERS
IN ANALOGICAL PLOTTERS

Abstract:

A simple procedure is proposed, in which the coordinates of the projection cen-ters of each independent model are computed by space resection on the photocarrier's fiducial marks. These coordinates are then compared with those obtained by space in_ tersection from the same marks, thus checking their stability along the observation cycle.

An electronic computation program, and some results are fi_ nally reported.

Rome, April 1980

1. - In aerial triangulation with analogical plotters the coordinates of the projection centers (PCs) are generally determined at the beginning, halfway and at the end of a group of observations (a strip, or even a block); a precision grid, the coordinates of which are known with a standard error of ab_ out $\pm 1 \mu \mathrm{~m}$, is observed to this purpose in a perfect horizontal attitude of the projection cameras. By this way it is obviously impossible to determine these coordinates in each model, as ef_ fected by the analytical plotters.

Now the PCs may be largely displaced at every variation of the camera's attitude; a determination of the PCs in each model would be therefore highly desirable. This seems possible also with analogical plotters, provided that their photocarriers have engraved proper fiducial marks; if we use a suitable dif_ ferential procedure, there is no need that these marks be stri_ ctly calibrated and referred to the principal point.

This is what we want to investigate. The research is lead through the following stages: a) - mathematical setup of the problem; b) - compilation of an electronic program; c) - expe_ rimentation, carried out with the Santoni Simplex II C plotter of the University of Ancona.

Mathematical setup

2. - The $X_{0} Y_{0} Z_{0}$ coordinates of the PC of a photo_ gram, properly placed in an analogical plotter, may be determi_ ned by various procedures, among which we shall take into consi_ deration the space intersection and the space resection.
2.1 - Let us consider a general point A in the plate's pla_ ne, and let us read its horizontal coordinates XY in two diffe_ rent planes $Z=Z_{1}$ and $Z=Z_{2}$. We have (fig. 1):

Fig. 1

1) $\frac{X_{1}-X_{2}}{Z_{1}-Z_{2}}=\frac{X_{1}-X_{0}}{Z_{1}-Z_{0}}$; $\frac{Y_{1}-Y_{2}}{Z_{1}-Z_{0}}=\frac{Y_{1}-Y_{0}}{Z_{1}-Z_{0}}$

Each A point gives therefore 2 equations, respect. in X and in Y. As the problem's unknowns are $3, X_{0} Y_{0} Z_{0}$, we must have at least two A points. We generally have $n>2$ points, therefo re a LS computation is necessary.

With the assumptions:
2) $\left\{\begin{array}{l}a=-\left(X_{1}-X_{2}\right) ; b=-\left(Y_{1}-Y_{2}\right) ; c=\left(Z_{1}-Z_{2}\right) \\ \mathrm{T}_{\mathrm{x}}=-\left(X_{4}+a Z_{1}\right) \quad ; \mathrm{T}_{\mathrm{y}}=-\left(c Y_{1}+b Z_{1}\right)\end{array}\right.$
we obtain from 2):

$$
\left\{\begin{aligned}
c X_{0}+a Z_{0}+T_{x} & =0 \\
c Y_{0}+b Z_{0}+T_{y} & =0
\end{aligned}\right.
$$

and hence, with further assumptions:

$$
x_{0}=x_{0}+1 x ; \quad y_{0}=y_{0}+1 l_{y} ; z_{0}=z_{0}+12
$$

$r_{x}=c\left(x_{0}-x_{1}\right)+a\left(z_{0}-Z_{1}\right) ; y_{y}=\left(\left(y_{0}-Y_{1}\right)+b z_{0}-Z_{1}\right)$
we obtain the transformed system:
3) $\begin{cases}c d x & +a d z+r_{x}=v_{x} \\ c d y & +b d z+r_{y}=v_{y y}\end{cases}$
which shall be solved by a LS computation.
It is possible to compute the focal length from the same ob_ servations. In fact, each observed point A_{i} gives a value of the $\left.\begin{aligned} & \text { focal length: } \\ & d_{1} \text {) }\end{aligned}\right|_{i}=-c \frac{\sqrt{x_{i}^{2}+y_{i}^{2}}}{\sqrt{a_{i}^{2}+b_{i}^{2}}}$
where $x_{i} y_{i}$ are the image coordinates of A_{i}, and $a_{i} b_{i} c$ are de_ fined by 3). In a quick approach, we may attribute to each value f_{i} the weight:
5)

$$
p_{i}=\left(a_{i}^{2}+b_{i}^{2}\right)^{2}
$$

indeed, as the image $x_{i} y_{i}$ coordinates may be considered as error free (they are precise grid coordinates), the standard error of f_{i} is inversely proportional to $\left(a_{i}^{2}+b_{i}^{2}\right)$. Hence we obtain a mean weighted value:

Remarks:

i) - precision grid plates are employed, whose image coordi_ nates are exactly known; but they remain unutilized, except in the computation of f. The values which we obtain for $X_{0} Y_{0} Z_{o}$ and for f are very strong and well checked;
ii) - the knowledge of the camera's inner orientation, and particularly of the focal length, is not necessary. On the other hand, every misplacement of the grid plate on the carrier is fully repeated in the PC's horizontal coordinates;
iii) - the plate must be strictly horizontal; it is obviously impossible to use this method to determine the PCs of each orien_ ted model along the operation's course.
2.2 - The method of space resection is based on the measure of the instrumental coordinates XYZ of at least 3 points ABC. The image coordinates of these points, and the camera's inner orientation elements must be now exactly known.

The method utilizes the relations which connect the horizon_ tail coordinates $X_{i} Y_{i}$ of a point P_{i}, with its image coordinates $x_{i} y_{i}$, the focal length F, the PC's coordinates $X_{0} Y_{0}$, and the spatial attitude $f w x$ of the camera.

In shorthand notation we may write:
7) $\left\{\begin{array}{l}X_{i}=X_{0}+f\left(h_{i} x_{i}, y_{i}, F, g_{1} w, x\right) \\ Y_{i}=y_{0}+g\left(n x_{i}, y_{i}, F, f, w, x\right)\end{array}\right.$
hence, being $d h=d Z_{o}$, and being $x_{i} y_{i} F$ constant at the variation of the camera's height and attitude:

The partial derivatives which appear in these formulas were evaluated by Non Gruber $[1$, and Hallert $[2]$ in the case of ver_ tical exposures, by Doge [3] in the most general case. Assuming Boge's formulas with some simplification for vertical exposures, the above system can be written:

$$
d Y_{0}-\frac{Y}{z} d 20-\frac{y^{2}+2^{2}}{2} d \omega-\frac{x^{y}}{2} d y-x d x-d y_{i}=y_{i}
$$

where:

$$
\begin{aligned}
-d X_{i}=X_{\text {computed }}-X_{i}=-\frac{2!}{D_{i}}\left(\cos , \cos x \cdot x_{i}+\cos \omega \operatorname{sen} x \cdot y_{i}+\right. \\
+\cos \omega \operatorname{sen} x \cdot F)-x
\end{aligned}
$$

10) $\begin{aligned} &-d Y_{i}=Y_{\text {computed }}-Y_{i}=-\frac{Z_{i}}{D_{i}}\left(-\sin \hat{y} \sin x_{i}+\cos \omega \cos x \cdot F\right)-y_{i} \\ &+\sin x \cdot\end{aligned}$
$D_{i}=-\operatorname{sen} y \cdot x_{i}+\operatorname{sen} \omega \cos y \cdot y_{i}+\cos \omega \operatorname{sid} \cdot F$

The system 9) shall be solved by a LS computation, with an iterative procedure, supposing that the 1 st approximation values ($X_{0}^{\prime}, Y_{o}^{\prime}, Z_{o}^{\prime}, 0,0,0$) are known, and having measured in the act_ ual camera's attitude the coordinates $X_{1 i}, Y_{1 i}$ of n points ($i=$ $=1, n ; n \geqslant 3)$. The iterations are continued until the residuals are no longer significantly improved, both in the linear and an_ gular elements.

Remarks:

i) - the computations are heavy, and need a mean size computer;
ii) - the riguorous knowledge of the camera's inner orienta_ tion, and of the image coordinates of at least 3 points is re_ quested;
iii) - the instrumental measurement of the coordinates of these points is done in one only plane, in any camera's attitu_ de. This is a big advantare, which permits the determination of the PCs even in every model, in the observation course itself;
iv) - unless we have a large number of calibrated points, the PC's definition is rather poor. The eccentricity of the plate's setting on the photocarrier is fully repeated in the $X_{o} Y_{0}$ coor_ dinates of the PC. However, this inconvenience is neqligible if we use the fiducial marks engraved on the photocarrier itself, and apply the differential procedure described in the following paragraphs.

$$
2.3 \text { - To obtain the goals stated in para } 1 \text {. it seems }
$$ convenable to state the operations' sequence as follows:

a) - at the beginning and the end of each group of observa_ tions (a block, or more blocks), we must determine the PCs of both cameras by observation of precision grids in two planes, by space intersection (procedure 2.1). At the same time we shall determine the focal length;
b) contemporaneously we shall determine the PCs utilizing the
fiducial marks engraved on the photocarrier. We shall use the observations from the lower plane and the focal length above ob_ tained, with the space resection procedure (see 2.2);
c) - in every model, or each $2-3$ models we shall determine the PCs of both cameras. That will be done after the relative o_ rientation, utilizing the fiducial marks engraved on the photo_ carrier, by space resection;
d) we shall compute the differences $\Delta X_{0}, \Delta Y_{0}, \Delta Z_{o}$ between the PCs' coordinates obtained as in b), and the same obtained as in c). These differences will be applied to the $X_{0} Y_{o} Z_{o}$ coor_ diantes obtained as in a); the result is the corrected coordina_ tes of the PCs in that model.

By this way, the PCs' coordinates introduced in the indepen_ dent model aerial triangulation are obtained by a differential procedure; the $\Delta X_{0} \Delta Y_{0} \Delta Z_{0}$ corrections are actually indepen_ dent both from the calibration of the photocarrier's marks, and from the knowledge of the inner orientation elements.

The above operations are performed by a computation program, which is organized in three stages:
i) - firstly, it computes the space intersection with obser_ vation in two planes, and the focal length;
ii) - then it computes the space resection with observations in one plane;
iii) - the program sets up the transformed system; the solu_ tion of the general IS problem is attained by a specific subrou tine, which normalizes the system and yelds the normal system of n equations in n unknowns ($n=3$ for space intersection; $n=6$ for space resection); solves it by the reciprocal matrix proce_ dure; and yelds the residuals of the observation equations and the variance-covariance matrix.

A copy of the program is available on request.

Experimentation

3. - Some experiments were effected at the Galileo Santoni Simplex II C plotter of the Ancona University, in three different days. The observations were recorded using the plot_ ter's REC III device, which types the coordinates with an accu racy of $1-2 \mu \mathrm{~m}$ (last digit is $1 \mu \mathrm{~m}$). Each utilized coordinate is the mean of 4 successive observations; the actual m.s.e. of this mean, i.e. of the input coordinate, may be evaluated in about $\pm 1 \mu \mathrm{~m}$ (internal accuracy).

The photocarriers' fiducial marks were calibrated by the Ga_ lileo firm a few days before the observations; the discrepancies respect the nominal values ($0, \pm 80 \mathrm{~mm}$) do not exceed $10 \mu \mathrm{~m}$, with a m.s.e. of about $\pm 1 \mu \mathrm{~m}$ 。

An accurate verification and correction of the plotter's gene_ ral conditions were not performed at the beginning of the opera_ tions; in fact, not always such operation is possible in current activity, and some errors may be introduced, as shown below.
3.1 - A summary of the obtained results is reported in the Annex 1, where some tests effected in different conditions and camera's attitudes are reported. From a synoptic glance on it, some conclusions are possible:
a. - heavy discrepancies (up to 0.2 mm) result in the plani_ metric $X_{0} Y_{0}$ coordinates obtained by space intersection (two pla_ nes) and space resection (one plane), carried out on the same observations. This is probably due to the concurrency of many causes, like: i) - imperfect knowled申ge of the camera's inner orientation; ii) - imperfect knowledge of the image coordinates; iii) - imperfect correction of the plotter. The correct values are those obtained by space intersection, which operates on the differences $\left(X_{2}-X_{1}\right),\left(Y_{2}-Y_{1}\right)$, and thus eliminates the major part of the above said errors;
b. - the altimetric Z_{0} coordinate remains almost unchanged
along the whole series of experiments, whatever be the computa tion procedure and the camera's attitude. Any variation in the camera's attitude, also of only 2^{g}, produces heavy variations in the planimetric $X_{0} Y_{0}$ coordinates (real or apparent, see [5]), but does not trouble the Z o coordinate and its accuracy;
c. - a combination of large ($\rho \omega x$) variations yelds quite anomalous variations in the $X_{o} Y_{0} Z_{o}$ coordinates and in their ac_ curacy. This is probably due to the program's limitations.
3.2 - We may now draw the following conclusions, who_ se validity can be probably extended to other analogical devices organized as Simplex II C:
i) - the first quite evident conclusion is that only the alti metric Z_{o} coordinate can be defined with a high reliability, and be computed in each independent model at the same time of its observation;
ii) - secondly, it seems evident that to obtain the PC's co_ ordinates it is better to use the photocarrier's fiducial marks than precision grids. The 4 marks which are available (5 in sin_ gle plates) are fully sufficient to give good PCs;
iii) - as a consequence, we may presume that when using ana_ log plotters the preference should be given to those adjustment and computation procedures which impose the coincidence only of the Z_{0} coordinate, and not also of X_{0} and Y_{0}. In a routine block adjustment there will all the same be a sufficient constraint re_ dundancy; in any case a lower redundancy is preferable to using wrong data.

Such a procedure is possible, and we show it in another paper [4] which we present at this Congress.

Rome, April 1980

Aknowledgements

The experimentation was carried out with the Galileo Santoni Simplex II C plotter of the Ancona University. The ob servations were effected by Ing. G. Fangi, and by Mr. A. Mancini, Mr. B. Branciari, Nr. D. Palpacelli for their graduation thesis in the same University; our hearthy thanks to them all for their clever and accurate cooperation.

References

[1] - VAN GRUBER, Otto - Ferienkurs in Photogrammetrie - Stuttgart, 1930.
[2] - HALLERT, Bertil - Photogrammetry basic principles and gene_ ral survey - iic Graw Hill, New York, 1960.
[3]- BOGF, E. Walter - Resection using iterative least s-quares Photogrammetric Engineering, XXXI n ${ }^{0} 4$, July 1965.
[4] - BIRARDI, G. - Independent models with projection centers connected only in height - Presented paper to the XIV Congress of the ISP, Hamburs; 1980 .
[5]- TOGLIATMI, G. - Mechanical plotters characteristics in connection with semi-analytical triangulation - Bollettino di Geodesia e Scienze Affini dell ${ }^{1} I_{0} G_{0}$ M., $n^{0} 4,1968$.

SUMMMARY OF THE OBTAINED RESULTS

$\begin{aligned} & \circ \\ & 2 \\ & 2 \\ & \infty \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 모 } \\ & \underline{a} \\ & 0 \\ & E \\ & 0 \end{aligned}$				Attituce (grad.)			P. C. Coordinates (ym)						
					ω	p	K		xo		Yo		Zo	
1	L	G	6	I	0	0	0		9551-		$9360{ }^{+}$	11	8656 ${ }^{+}$	19
									173	65	0027	48	8676	23
2	L	P.C	4	I	0	0	0		9962	14	9864	13	8672	30
				R					079	16	0032	13	8649	4.
3	L	P. C	4	R	2	0	0		152	20	0000	17	8682	26
4	'	"	"	"	5	0	0		052	104	0035	87	8628	311
5	"	"	"	"	0	2	0		041	92	0011	69	8657	20
6	"	'	"	"	0	5	0		073	145	9963	91	8609	26
7	'	"	'	'	0	0	2		985	67	9991	57	8627	17
8		"	11	"	0	0	5		996	59	9985	51	8670	15
9	"	"	"	"	0	2	5		105	70	0807	53	8658	16
10	'	"	"	"	5	2	0		984	1157	9162	860	8727	296
11	"	"	'	'	5	5	5		6745	2714	0370	1875	8801	616
12	R	G	7	I	0	0	0		954	7	9039	7	9717	12
				R						83	0106	62	9730	30
13	R		4	I	0	0	0		981	9	9847	9	9728	20
									136	176	0261	150	9700	46
14	R	P.C	4	R	2	0	0		227	133	0157	113	9745	36
15	!	"	'	"	5	0	0		315	159	0234	133	9698	48
16	'	"	"	"	0	2	0		222	40	0257	30	9762	9
17	"	"	${ }^{\prime \prime}$	"	0	5	0		489	36	0302	23	9724	6
18.	"	"	"	11	0	0	2		032	133	0274	113	9774	34
19	"	"	"	"	0	0	5		281	50	0273	43	9706	13
20	"	"	"	"	2	5	0		298	1053	9428	663	9820	194
21	'	"	11	"	5	5	5		950	2809	6050	1681	0035	539

(a) - L=left; R=right
(b) - G=precision grid; PC=photocarrier
(c) - I=space intersection (2 planes); R=space resection (1 plane)

